Crystalline materials show a range of different bond types:

Chemical bonding Kap. 2

Like charges repell each other

 $E_{e} = \left(\frac{-e^{2}}{4\pi\varepsilon_{0}r}\right) \times \left(Geometry\right) \times \left(ioniccharge\right)$

 $E_e = N_{\rm A} \left(\frac{-e^2}{4\pi\epsilon_0 r} \right) \alpha Z^2$

Ħ

Ionic structures – bond strength

Example:

NaCl type structure, Na⁺ in octahedra holes \rightarrow CN(Na⁺) = 6

CN (CI-)?

CN (CI-) = 1/1*6 = 6

CaF₂ type structure, F⁻ in tetrahedra holes \rightarrow CN(F⁻) = 4

CN (Ca²⁺)? CN (Ca²⁺) = 2/1*4 = 8

Rutil type structure (TiO₂); CN(Ti⁴⁺) = 6

CN (O²⁻)?

 $CN(O^{2-}) = 1/2*6 = 3$

Ionic structures – Radius ratio

Ideally ions surround themselves with as many ions op the oposite charge as possible. The ions must be in contact \rightarrow CN depends on the radius ratios.

Ionic structures – bond strength

Cation	Coordination number(s)	ebs
Li ⁺	4, 6	1,1
Na^+	6,8	100
Be ²⁺	3,4	
Mg^{2+}	4,6	1-10
Ca ²⁺	8	0 1 →1 ¤
Zn^{2+}	4	r –ic
A1 ³⁺	4,6	4 €014 ⊂10
Cr^{3+}	9	, ⊢ic
Si ⁴⁺	4	. –
Ge ⁴⁺	4,6	$1, \frac{2}{3}$
T_{i}^{4+}	9	C4164
Th ⁴⁺	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~) (c

Table 2.2 Allowed and unallowed combinations of corner-sharing oxide polyhedra

Allowed	Example	Unallowed
2SiO4tet.	Silica	> 2SiO4tet.
1MgO4tet. + 3AlO6oct.	Spinel	3AlO4tet.
1SiO4tet. + 3MgO6oct.	Olivine	1SiO ₄ tet. + 2AlO ₄ tet
8LiO4tet.	Li ₂ O	4TiO6oct.
2TiO ₆ oct. + 4CaO ₁₂ dod.	Perovskite	,
3TiO6oct.	Rutile	

Ionic structures - Radius ratio

Dxide	Calculate	d radius ratio*	Observed sti	ucture type
202	~0.1	(CN = 2)	Molecular	(CN = 2)
5iO2	0.32	(CN = 4)	Silica	(CN = 4)
.Oot	f 0.43	(CN = 4)	f Silica	(CN = 4)
2021	0.54	(CN = 6)	Rutile	(CN = 6)
CiO ₂	0.59	(CN = 6)	Rutile	(CN = 6)
inO ₂	0.66	(CN = 6)	Rutile	(CN = 6)
^b 0 ₂	0.73	(CN = 6)	Rutile	(CN = 6)
TCO I	f 0.68	(CN = 6)	Fluorite	(CN = 8)
2011	1 0.77	(CN = 8)		
-Oe	f 0.75	(CN = 6)	Fluorite	(CN = 8)
700	l 0.88	(CN = 8)		
$^{1}hO_{2}$	0.95	(CN = 8)	Fluorite	(CN = 8)

given structure is divided by the number of ions in one Kapustinskii found that if the Madelung constant for a

The Kapustinskii equation

formula unit (n) the resulting values are almost constant:

Structure	Madelung const.(A)	Alv	Coordination
SCI	1./63	0.88	8.8

0	4	4	
6:6	8:7	9:7	
0.87	0.84	0.83	
1.748	2.519	4.172	
NaCI	CaF ₂	α -Al $_2$ O $_3$	

general lattice energy equation that can be applied to any crystal regardless of the crystal structure

$$U = -\frac{1200.5VZ_{+}Z_{-}}{r_{c} + r_{a}} \left(1 - \frac{0.345}{r_{c} + r_{a}}\right) \text{ kJ mol}^{-1}$$

Born Haber cycle

The lattice energy can be calculated by using Hess law and the following scheme:

The Kapustinskii equation

Most important advantage of the Kapustinski equation:

It is possible to apply the equation for lattice calculations of crystals with polyatomic ions (e.g. KNO_3 , $(NH_4)_2SO_4$...).

A set of "thermochemical radii" was derived for further calculations of lattice enthalpies

ITOHT CT.T	nocnenncal	raun c	monstron 10	IC TOUS
------------	------------	--------	-------------	---------

lon	uud	Ion	mq	lon	md
TH1	151	CIO ₄	226	MnO ²⁻	215
Me4N ⁺	215	CN	177	02-	144
PHT	171	CNS ⁻	199	_HO	119
AICI4	281	C03-	164	PtF2-	282
BF_4^-	218	IOT	108	PtCl ² -	299
BH4	179	N	181	PtBrg-	328
BrO ⁻	140	NCO ⁻	189	PtI ²⁻	328
CH,CO0-	148	NOT	178	SO ² -	244
CIO ₃	157	NOT	165	SeO ²⁻	235

Crystalline materials show a range of different bond types:

Example: Bal ₂	$S_{Ba} = 0.78$ $\Delta S_{c}^{Ba} = 1.93$ $S_{1} = 3.84$ $\Delta S_{c}^{c} = 4.08$ $Sb = 3\sqrt{(0.78^{*}3.84^{*}3.84)} = 2.26$	ΔS _{Ba} = 2.26 – 0.78 = 1.48 ΔS ₁ = -3.84 + 2.26 = -1.58	$\delta = \frac{\Delta S_{Ba}}{\Delta S_{c}^{Ba}} = \frac{1.48}{1.93} = 0.78 \qquad Ba^{+0.78}$	$\delta = \frac{\Delta S_{\rm t}}{\Delta S_{\rm c}^{\rm l}} = -\frac{1.58}{4.08} = -0.39 \qquad \textbf{l-0.39}$	Atomic radius can be calculated from: $r=r_{\rm c}-B\delta$	BaI Γ_{Ba} 1.98 Å A 1.71 Å Γ_{c} 1.98 Å1.33 Å Γ_{1} 1.33 Å A 1.384*0.39 Å A B0.3481.384Ba-I $Ba-I$ $Ba-I$ $Ba-I$ $Ba-I$ $Ba-I$	Bond valence and bond length	Valence bond theory is easily adaptable to <i>molecul</i> es.	An approach for crystalline solids is to introduce <i>bond valence (bt)</i> . The sum of <i>bv</i> for all bonds to an atom must equal the <i>valence of</i> that atom> <i>the valence sum rule.</i> $ \int_{i}^{1} = \sum_{j}^{1} b_{ij} $ The <i>bv</i> is found empirically from other structures and vary with bond length $ \int_{i}^{0} = \left(\frac{R_{0}}{R} \right)^{N} $ Each bond is freated as an individual indinitindividual individual indinitindividual individual in
Sandersons model – Partial charge	Partial charge is the ratio of change in electronegativity undergone by an atom on bond formation to the change it would have undergone on becoming completely ionic with charge + or -1	A point of reference is necessary. The bonds in NaF is 75% ionic.	The change in electronegativity on acquiring a + or -1 charge is ΔS_c :	$\Delta S_c = 2.08\sqrt{S}$		$\delta = \frac{\Delta S}{\Delta S_c} \Delta S = S - S_b$	Mooser – Pearson plots and ionicities	The radius ratio is unsatisfactory in prediction of structure type.	Here the formation of

